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Introduction 
A protein’s sequence of amino acids encodes its function. This “function” could refer to a 
protein’s natural biological function, or it could also be any other property including binding 
affinity toward a particular ligand, thermodynamic stability, or catalytic activity. A detailed 
understanding of how these functions are encoded would allow us to more accurately 
reconstruct the tree of life and possibly predict future evolutionary events, diagnose genetic 
diseases before they manifest symptoms, and design new proteins with useful properties. We 
know that a protein sequence folds into a three-dimensional structure, and this structure 
positions specific chemical groups to perform a function; however, we’re missing the 
quantitative details of this sequence-structure-function mapping. This mapping is extraordinarily 
complex because it involves thousands of molecular interactions that are dynamically coupled 
across multiple length and time scales. 

Computational methods can be used to model the mapping from sequence to structure 
to function. Tools such as molecular dynamics simulations or Rosetta use atomic 
representations of protein structures and physics-based energy functions to model structures 
and functions (1–3). While these models are based on well-founded physical principles, they 
often fail to capture a protein’s overall global behavior and properties. There are numerous 
challenges associated with physics-based models including consideration of conformational 
dynamics, the requirement to make energy function approximations for the sake of 
computational efficiency, and the fact that, for many complex properties such as enzyme 
catalysis, the molecular basis is simply unknown (4). In systems composed of thousands of 
atoms, the propagation of small errors quickly overwhelms any predictive accuracy. Despite 
tremendous breakthroughs and research progress over the last century, we still lack the key 
details to reliably predict, simulate, and design protein function. 

In this chapter, we present the emerging field of data-driven protein engineering. Instead 
of physically modeling the relationships between protein sequence, structure, and function, 
data-driven methods use ideas from statistics and machine learning to infer these complex 
relationships from data. This top-down modeling approach implicitly captures the numerous and 
possibly unknown factors that shape the mapping from sequence to function. Statistical models 
have been used to understand the molecular basis of protein function and provide exceptional 
predictive accuracy for protein design.   
 
The data revolution in biology 
The volume of biological data has exploded over the last decade. This is being driven by 
advances in our ability to read and write DNA, which are progressing faster than Moore’s law 
(5). Simultaneously, we have also gained unprecedented ability to characterize biological 
systems with advances in automation, miniaturization, multiplex assays, and genome 
engineering. It is now routine to perform experiments on thousands to millions of molecules, 
genes, proteins, and/or cells. The resulting data provides a unique opportunity to study 
biological systems in a comprehensive and unbiased manner. 

Protein sequence and structure databases have been growing exponentially for decades 
(Fig 1bc). Currently, the UniProt database (6) contains over 100 million unique protein 
sequences and the Protein Data Bank (7) contains over 100,000 experimentally determined 



 2 

protein structures. While there is an abundance of protein sequence and structure data, there is 
still relatively little data mapping sequence to function. ProtaBank is a new effort to build a 
protein function database (8). However, function data is challenging to standardize because it is 
highly dependent on experimental conditions and even the particular researcher that performed 
the experiments. Therefore, most data-driven protein modeling approaches utilize sequence-
function data for a particular protein family that is generated by a single research group. This 
allows a consistent definition of “function” that is not influenced by uncontrolled experimental 
factors.  

Many sequence-function data sets are generated by protein engineering experiments 
that involve screening libraries of sequence variants for improved function. These variants may 
include natural homologs, random mutants, targeted mutants, chimeric proteins generated by 
homologous recombination, and computationally designed sequences. Each of these sequence 
diversification methods explores different features of the sequence-function mapping and varies 
in their information content. Important factors include the sequence diversity of a library, the 

 
 
Figure 1: The growth of biological data. (a,b) DNA sequencing and synthesis technologies are advancing 
faster than Moore’s law. As a result, costs have decreased exponentially over the last two decades. (c,d) 
Large-scale genomics, metagenomics, and structural genomics initiatives have resulted in exponential 
growth of protein sequence and structure databases. (e) Deep mutational scanning experiments combine 
high-throughput screens/selections with next-generation DNA sequencing to map sequence-function  
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likelihood of functional vs nonfunctional sequences, and the difficulty/cost of building the desired 
gene sequences. 

Recent advances in high-throughput experimentation have enabled researchers to map 
sequence-function relationships for thousands to millions of protein variants (9, 10). These 
“deep mutational scanning” experiments start with a large library of protein variants, and this 
library is passed through a high-throughput screen/selection to separate variants based on their 
functional properties (Fig 1e). The genes from these variant pools are then extracted and 
analyzed using next-generation DNA sequencing. Deep mutational scanning experiments 
generate data containing millions of sequences and how those sequences map to different 
functional classes (e.g. active/inactive, binds ligand 1/binds ligand and 2). The resulting data 
have been used to study the structure of the protein fitness landscape, discover new functional 
sites, improve molecular energy functions, and identify beneficial combinations of mutations for 
protein engineering (9, 11–13). 
 
Statistical representations of protein sequence, structure, and function 
The growing trove of biological data can be mined to understand the relationships between 
protein sequence, structure, and function. This complex and heterogenous protein data needs 
to be represented in simple, machine-readable formats to leverage advanced tools in pattern 
recognition and machine learning. There are many possible ways of representing proteins 
mathematically including simple sequence-based representations or more advanced structure/ 
physics-based representations. In general, a good representation is low dimensional but still 
captures the system’s relevant degrees of freedom. 
 
Representing protein sequences 
A protein’s amino acid sequence contains all the information necessary to specify its structure 
and function. Each position in this sequence can be modeled as a categorical variable that can 
take on one of twenty amino acid values. Categorical data can be represented using a one-hot 
encoding strategy that assigns one bit to each possible category. If a particular observation falls 
into one of these categories, it is assigned a “1” at that category’s bit, otherwise it is assigned a 
“0.” A protein sequence of length l can be represented with a vector of 20l bits; 20 bits for each 
sequence position (Fig 2). For example, assuming the amino acid bits are arranged in 
alphabetical order (A, C, D, E ... W, Y), if a protein has alanine (A) at the first position, the first 
bit would be 1 and the next 19 bits would be 0. If a protein has aspartic acid (D) at the first 
position, the first two bits would be 0, the third bit 1, and the next 17 bits 0. This encoding 
strategy can be applied to all amino acid positions in a protein and represent any sequence of 
length l. One-hot encoding sequence representations are widely used in machine learning 
because they are simple and flexible. However, they are also very high dimensional (20l ≈ 
thousands of variables for most proteins) and therefore require large quantities of data for 
learning.   

Machine learning is widely used in the fields of text mining and natural language 
processing to understand sequences of characters and words. The tools word2vec and doc2vec 
use neural networks to learn vector representations that encode the linguistic context of words 
and documents (14, 15). These embeddings attempt to capture word/document “meaning” and 
are much lower dimensional than the original input space. Similar concepts have recently been 
applied to learn embedded representations of amino acid sequences (16). Each amino acid 
sequence is treated as a document and the sequence is broken up into k-mers of constant 
length to represent words. These k-mers, along with their corresponding protein sequences, are 
used to predict average k-mers and infer representations or ‘protein embeddings’. These protein 
embeddings are then used to model specific properties such as thermostability. This method 
lowers the dimensionality of the protein sequence representation because only a subset of k-
mers is required to represent the entire protein sequence. 
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Representing protein structures 
The properties of proteins depend on sequence through their structure, therefore structure-
based representations provide a more direct link to function. Experimentally determining a 
protein’s three-dimensional structure (via crystallography, NMR, CryoEM) is significantly more 
challenging and time consuming than determining sequence or function. Therefore, most 
sequence-function data sets do not contain experimentally determined protein structures. 
Instead, this missing structural information can be approximated by taking advantage of the 
extreme conservation of structures within a family. Homologous proteins with as low as 20% 
sequence identity still have practically identical three-dimensional structures (17). 

A protein’s overall fold can be represented by specifying which residues are “contacting” 
in the three-dimensional structure. These contacting residues could be defined as any pair of 
residues that has an atom within five angstroms. Other contact definitions could include different 
distance cutoffs, Cα-Cα distances, or Cβ-Cβ distances. A protein’s contact map specifies all 
pairs of contacting residues and provides a coarse-grained description of the protein’s overall 
fold. Importantly, contact maps are highly conserved within a protein family, and therefore any 
two evolutionarily related proteins have practically identical contact maps. If we assume a fixed 
contact map for a protein family, structural information can be represented using a one-hot 

 
 

Figure 2: Sequence, structure, and function representations. (a) A protein’s sequence folds into a three-
dimensional structure, and this structure determines its function and properties. (b) Protein sequences 
can be represented using a one-hot encoding scheme that assigns 20 amino acid bits to each residue 
position. A bit is assigned a value of “1” if the protein has the corresponding amino acid at a particular 
residue position. (c) Structure-based representations use modeled protein structures to extract key 
physiochemical properties such as hydrogen bonds, total charge, or molecular surface areas. (d) Protein 
functions can be continuous properties such as thermostability or catalytic efficiency, or discrete 
properties such as active/inactive. Discrete properties can be represented using a binary (0 or 1) 
encoding.  
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encoding scheme similar to sequence encoding described above. Each pair of contacting 
residues can take on one of 400 (202) possible amino acid combinations, which can be one-hot 
encoded using 400 bits. Therefore, the structure of a protein with c contacts can be represented 
with 400c bits. In contrast to sequence-based representations, this contact-based 
representation can capture pairwise interactions between residues. However, this increased 
flexibility comes at the cost of significantly higher dimensionality. 

Three-dimensional protein structures can also be predicted using molecular modeling 
and simulation software. Most protein sequence-function data sets can take advantage of 
homology modeling approaches that start with a closely related template structure, mutate 
differing residues to the target sequence, and run minimization methods to relax the structure 
into a local energy minimum. State-of-the-art homology modeling methods can reliably predict 
protein structures with less than 2 angstrom atomic RMSD (18). These predicted structures can 
be analyzed to extract key physiochemical properties such as surface areas, solvent exposure, 
and physical interactions (Fig 2). This approach was recently applied to model the kinetic 
properties of β-glucosidase point mutants (19). The substrate was docked into β-glucosidase 
homology models, and this enzyme-substrate interaction was used to extract 59 physical 
features such as interface energy, number of intermolecular hydrogen bonds, and change in 
solvent accessible surface area. A simple linear regression model could relate these physical 
features to β-glucosidase turnover number, Michaelis constant, and catalytic efficiency. Physics-
based representations tend to be lower dimensional than the sequence and contact encodings 
described above. They may also have good generalization within a protein family or even 
across protein families because they are based on fundamental biophysical principles. 
However, these representations will always be limited by the resolution of structure prediction 
methods, and therefore may be restricted to small changes in protein sequence space (~1-2 
amino acid substitutions). 
 
Learning the sequence-function mapping from data 
Advanced pattern recognition and machine learning techniques can be used to automatically 
identify key relationships between protein sequence, structure, and function. These tools are 
used for two primary tasks: supervised learning and unsupervised learning. Supervised 
methods, such as regression and classification, attempt to learn the mapping between a set of 
input variables and output variables. The term “supervised learning” arises because the 
algorithms are given examples of input-output mapping to guide the learning process. In 
contrast, unsupervised methods are not given information about the output variable, but instead 
try to learn relationships between the various input variables.   
 
Supervised learning (Regression/Classification) 
Regression is a supervised learning technique that is used to model and predict continuous 
properties. Continuous protein properties could include thermostability, binding affinity, or 
catalytic efficiency. Regression methods span from simple linear models to advanced nonlinear 
models such as neural networks.  

Linear regression is the simplest regression technique and applies fixed weights to each 
input variable. A linear model is described by the following equation: 

𝑦 = 𝑋𝛽 +  𝜖, 
where y is a vector of continuous output variables, X is a matrix of sequence/structure features 
(one protein variant per row), β is the weight vector, and 𝜖 is the model error. The model 
parameters (β) can be estimated by minimizing the sum of the squared error. This least-squares 
parameter estimate has an analytical solution: 

𝛽 = 𝑋!𝑋 !! 𝑋!𝑦  
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Here, 𝛽 corresponds to an estimate of the true β. 𝛽 can then be applied to new proteins to 
predict their properties: 

𝑦 = 𝑋!"#𝛽 
Linear regression provides a simple framework for relating sequence/structure to function, and 
predicting the properties of previously uncharacterized proteins. 

Linear regression has been used to model chimeric cytochrome P450 thermostability 
(20). A library of chimeric P450s was generated by shuffling sequence elements from three 
related bacterial P450s (21). The thermostability of 184 randomly chosen chimeric P450s was 
determined, and a linear regression model was used to relate sequence to thermostability. Each 
chimeric protein’s sequence was one-hot encoded by specifying which sequence elements were 
present. This encoding scheme is similar to the sequence-based one-hot encoding described 
above, but sequence “blocks” are used rather than individual amino acids. This simple 
regression model revealed a strong correlation between the predicted and observed 
thermostability (Fig 3). The model was applied to predict the thermostabilities of all 6,351 
possible sequences in the chimeric P450 library, and the most stable predicted sequences were 
validated experimentally.  

Supervised learning methods, including linear regression, are highly susceptible to 
overfitting data, especially when the number of model parameters exceeds the number of 
observations. Overfitting occurs when the model fits spurious correlations or noise in the data, 
and not the true underlying signal. An overfit model will display very small error on the training 
data, but large prediction error on new data points. All statistical models must be evaluated for 
overfitting and their ability to generalize to new, unseen data points. One method for model 
validation involves training the model on some fraction of the data and using the remainder to 
evaluate the model’s predictive ability. For example, one could train a model on 60% of the data 
and test the model on the remaining 40%. This holdout method is simple to implement, but also 
throws out valuable information because the model is not learning from the entire data set. 
Cross-validation is another method for model evaluation that more effectively utilizes the 
available data. Cross-validation is similar to the holdout method, but rotates through multiple 
training set-test set combinations. For example, ten-fold cross-validation breaks the data into 
ten subsets; a model is trained on nine of these subsets and used to predict the tenth subset. 
This process is repeated over all ten data folds (i.e. testing on all ten subsets) and the results 

 
 
Figure 3: A linear regression model for cytochrome P450 thermostability. This model relates sequence 
blocks of chimeric P450s to their thermostability values. The plot shows the model’s cross-validated 
predictions for 184 chimeric P450s. 
 



 7 

are averaged. Cross-validation allows all data points to be used in model training and 
evaluation. 

Overfitting can be reduced using regularization methods that favor simpler models. 
Regularized parameter estimation involves minimizing the model’s squared error in addition to 
the magnitude of the model parameters. This can be achieved by including a penalty term on 
the norm of the parameter vector:  

min
!

𝑋𝛽 − 𝑦 ! +  𝜆 𝛽 ! 

Here, the first term corresponds to the model’s squared error, the second term is the magnitude 
of the model parameters, and 𝜆 tunes the relative influence of these two terms. n determines the 
type of vector norm and is typically equal to 0, 1, or 2. L0 regularization (n=0) penalizes the total 
number of non-zero parameters in the model, L1 regularization (n=1) penalizes the sum of the 
parameter absolute values, and L2 regularization (n=2) penalizes the sum of the squared 
parameters. This minimization problem can be solved analytically if n=2 or using convex 
optimization if n=1. The hyperparameter 𝜆 can be determined using cross-validation. 
Combinations of these penalties can also be used, such as elastic net regression, which utilizes 
both L1 and L2 norms.  

While regression methods model continuous properties, classification methods are used 
to model discrete protein properties such as folded/unfolded or active/inactive. Classifiers are 
important for modeling data generated by high-throughput methods such as deep mutational 
scanning because these methods often bin proteins into broad functional classes. Logistic 
regression is simple classification method that transforms a linear model through the logistic 
(sigmoid) function to produce binary outputs. Note: the name “logistic regression” is a misnomer 
because it actually performs classification rather than regression. Logistic regression 
parameters can be identified using iterative methods or convex optimization. Like the regression 
models discussed above, classification models can be evaluated using cross-validation and 
regularization can be used to prevent overfitting. 
           Logistic regression was recently used to refine molecular energy functions for designing 
de novo miniproteins (22). Thousands miniproteins were designed using Rosetta protein design 
software, and these designs were screened for folding using a high-throughput yeast display 
assay. Each protein’s structure was modeled and used to generate physical input features such 
as number of H-bonds, Lennard-Jones energies, and net charge. Logistic regression was then 
used to map these physical features to whether a design was successful or unsuccessful. The 
authors found a protein’s buried nonpolar surface area was a dominant factor in determining 
design success. The logistic regression model was used to rank designs and drastically 
improved the rate of successful designs.  

Kernel methods are another modeling approach that is widely used in machine learning 
and bioinformatics. In contrast to the parametric regression/classification methods described 
above, kernel methods do not input feature vectors, but instead define a similarity function to 
compare pairs of data points. This similarity function could be as simple as an inner product 
between feature vectors, or they can represent more complex, potentially infinite dimensional, 
relationships between data points (23). This flexibility allows them to learn from unstructured 
objects such as biological systems. Popular kernel methods include Support Vector Machines 
(SVMs) and Gaussian Process (GP) regression/classification.  

Gaussian processes use kernel functions to define a prior probability distribution over a 
function space. This allows predictions of both the function mean and its confidence intervals. 
Gaussian processes were used to model cytochrome P450s (24). A structure-based kernel 
function was developed to define structural similarity between pairs of proteins. GP regression 
using this kernel function explained 30% more of the variation in P450 thermostability in 
comparison to linear regression and sequence-based kernels. The structure-based kernel was 
also used to model enzyme activity and binding affinity for several P450 substrates. 
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Unsupervised/semisupervised learning  
Unlike supervised learning, where the data is labeled or categorized, in unsupervised learning 
there are no labels associated with each data point. Unsupervised learning can be used to find 
patterns such as clusters or correlations within data. Examples of unsupervised methods 
include principal component analysis (PCA) and clustering. The main drawback of unsupervised 
techniques is that the outputs are unknown, i.e. there is no mapping to protein function. 
However, these techniques still provide valuable information about proteins because of the 
massive amount of protein sequence data that is currently available. 

Unsupervised methods can be used to identify patterns in multiple sequence alignments 
(MSAs) of evolutionarily related proteins. Statistical coupling analysis (SCA) analyzes residue 
coevolution by performing principal component analysis on a protein family’s MSA (25). The 
dominant principle components consist of positions that coevolve and can reveal networks of 
spatially connected amino acids called protein sectors (Fig 4). Protein sectors have been 
demonstrated to play roles in protein dynamics and allostery and may represent functional 
modules (26, 27). EVmutation is another unsupervised method that models natural sequence 
variation and simultaneously considers epistasis (non-independence of mutational effects) (28). 
Although EVmutation is only parameterized on an MSA (i.e. it is unsupervised), it is capable of 
predicting the functional effects of amino acid substitutions and residue interdependencies.   
 Semisupervised methods learn from data sets that contain both unlabeled and labeled 
data points. Semisupervised approaches can be used in protein engineering to transfer 
knowledge across protein families. A semisupervised approach was recently developed that 
trained an unsupervised embedding model (doc2vec) on a large protein sequence database 
(16). These embeddings were then used as the inputs for supervised Gaussian process 
regression. This approach was used to model channelrhodopsin membrane localization, P450 
thermostability, and epoxide hydrolase enantioselectivity.  
 

Applying statistical models to engineer proteins 
Statistical modeling approaches provide unprecedented predictive accuracy for a wide variety of 
complex protein functions/properties. These models can be used to understand protein function 
and design new proteins. We discuss several protein engineering strategies that leverage the 
predictive power of statistical models.  

The most straightforward data-driven protein engineering approach involves training a 
model on a data set and then extrapolating that model to design best predicted sequences. This 
method was applied to engineer thermostable fungal cellobiohydrolase class II (CBHII) 
cellulases (29). A panel of 33 chimeric CBHIIs was characterized for their thermal inactivation 

 
Figure 4: Unsupervised learning from protein sequences. (A) Statistical coupling analysis of the RNase 
superfamily reveals five independent components (ICs) that correspond to groups of coevolving residues 
(B) These five ICs form contiguous “sectors” in the three-dimensional protein structure. Figure was 
adapted from (27). 
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half-lives at elevated temperatures. This data was used to train a linear regression model that 
related sequence blocks to thermal tolerance. This model was then used to design 18 chimeras 
that were predicted to have enhanced stability relative to the parent enzymes. Most of these 
designed CBHII chimeras could hydrolyze cellulose at higher temperatures than most stable 
parent. A key feature of this extrapolation-based design approach is a relatively small training 
set (<1% of possible chimeras) can be used to make predictions over a massive combinatorial 
sequence space. The CBHII regression model also pointed to a single sequence block that 
contributed over 8 °C of thermostability (30). Further analysis revealed that a single mutation in 
that block (C313S) was responsible for the elevated thermostability. This example highlights 
how statistical models can be used to uncover molecular mechanisms contributing to protein 
function.  

It is important to consider the space of sequences that a statistical model can make valid 
predictions on. This prediction domain is highly dependent on the model’s sequence/structure 
representation. For example, consider a model that uses one-hot encoding to represent protein 
sequences. This model can only learn the effect of amino acids that are observed in the training 
set, and therefore can only make predictions about sequences composed of combinations of 
these observed amino acids. Representations that include information about amino acid 
properties and/or protein structure can broaden a model’s prediction domain. Representations 
that use three-dimensional structural models to extract key physiochemical properties have 
potential to generalize well within a protein family and even across protein families. 

Statistical models can be incorporated into an iterative directed evolution framework. 
ProSAR uses a statistical model to guide the search for beneficial mutations (31). This model 
consists of a one-hot encoded sequence representation and a partial least squares linear 
regression model to relate sequence to function. A mutational library is screened, and the model 
classifies each amino acid substitution as deleterious, neutral, beneficial, or underdetermined 
(i.e. needing more information). Substitutions that are beneficial or underdetermined are 
combined with new substitutions in the next round, and this screen-and-learn process is 
repeated over multiple rounds. The ProSAR method was used to engineer bacterial halohydrin 
dehalogenases (HHDH) to perform a cyanation reaction important for the synthesis of the 
cholesterol-lowering drug Lipitor (31). 18 rounds of ProSAR yielded HHDH variants with over 35 
mutations and increased the volumetric productivity of target reaction by ∼4,000-fold. More 
recently, ProSAR-driven evolution was used to evolve ultra-stable carbonic anhydrase variants 
(107 ˚C thermostability at pH 10 in 4.2 M solvent) that enhanced the rate of CO2 capture by 25-
fold over the natural enzyme (32). 

Statistical models can also be used in an active learning setting that iteratively explores 
protein sequence space. The goal of active learning in protein engineering is to identify optimal 
sequences while minimizing the total number of required experiments. This can be 
accomplished by iterating over multiple design-test-learn cycles (Fig 5a). At each design step in 
this cycle, the active learning algorithm must decide between (1) designing informative 
sequences that will improve the model or (2) designing optimal sequences predicted by the 
model. This “exploration-exploitation dilemma” is encountered in diverse application domains 
such as online advertising, robotic control, and clinical trials. Upper confidence bound (UCB) 
algorithms provide a principled framework for trading off between exploration and exploitation 
modes (33). UCB algorithms iteratively select the point with the largest upper confidence bound 
(predicted mean plus confidence interval) and therefore encourage sampling of points that are 
simultaneously optimized and uncertain (Fig 5b). A UCB search algorithm was combined with a 
Gaussian process regression model to optimize cytochrome P450 thermostability (24). Eight 
rounds of UCB optimization identified thermostable P450s that were more stable than variants 
made by rational design, recombination or directed evolution. 
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Conclusions and future outlook 
The protein sequence-structure-function mapping involves thousands of interacting atoms, a 
practically infinite number of dynamic conformational states, and physical processes that span 
multiple length and time scales. This mapping is extremely difficult to model from a physical 
perspective. In contrast, statistical methods are able to learn complex interrelationships directly 
from experimental data. This top-down understanding of complex systems allows discovery of 
new functional mechanisms and provides exceptional predictive accuracy.  

This chapter provides an overview of emerging data-driven approaches to model and 
engineer proteins. We have described statistical representations of proteins, how these 
representations can be used to learn from data, and practical protein engineering applications of 
these models. As a relatively new field, there is still significant room for improving these 
methods, especially in the area of sequence and structure representations. Ideal 
representations would be sparse, but still have a broad prediction domain. These 
representations may integrate different sources of information (evolutionary, biochemical, and 
physical) into a single unified model. Advanced machine learning methods such as dictionary 
learning and deep learning attempt to learn new representations directly from data and could 
play an important role in protein modeling.  

In addition to proteins, statistical approaches can be used to model genotype-phenotype 
relationships across all levels of biological organization. For example, linear regression was 
used to model product titers in a multi-enzyme biosynthetic pathway; this model was then used 
to optimize enzyme expression levels to maximize overall product production (34). Another 
example used compressed sensing methods to model a protein’s DNA-binding specificity (35). 
Statistical methods have been widely used in genetics relate phenotypes to genetic loci using 
quantitative trait locus (QTL) mapping (36). 

 
 

Figure 5: Active machine learning. (a) Active learning involves designing maximally informative 
sequences, experimentally characterizing these sequences, learning from the resulting data, and 
repeating this process over multiple iterations. (b) Upper-confidence bound (UCB) optimization involves 
iteratively selecting the sequence with the largest upper confidence bound (mean + confidence interval). 
The schematic illustrates sequence space in one dimension and the true mapping from sequence to 
function as a black line. Characterized sequences (small red dots) have accurate model predictions and 
small confidence intervals. The first panel shows five characterized sequences, which cause the model to 
propose one UCB optimal sequence (marked with a star). The second panel shows the results after this 
UCB optimal sequence is characterized—this causes a new UCB sequence to be proposed. This iterative 
process is guaranteed to efficiently converge to the optimal point.  
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Data-driven approaches are transforming every field of science and engineering. This 
revolution has been triggered by the confluence of advances in data generation, data access, 
and data analysis/interpretation. Advanced experimental technologies are allowing us to 
analyze biological systems on an unprecedented scale and resolution. The resulting data is also 
becoming readily accessible through large, public biological databases and repositories. At the 
same time, there have been tremendous advances in artificial intelligence and pattern 
recognition. Widespread interest in machine learning has also driven improvements in software 
packages such as the Scikit-learn and Keras deep learning Python libraries. Data-driven 
approaches leverage the continuously expanding sea of data and will play an increasingly 
important role in biological discovery and engineering. 
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